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1. Introduction

Assume U to be a bounded measure on R, . Let f be a kernel changing u

into the transformed function
o0

(1) g(t) := [ £(t,u)du(u).
0

In the literature dealing with operational calculus the recovery of u
from g is mostly accomplished by complex inversion formulas. One knows that
for a variety of integral transforms (i.e. Laplace, Stieltjes), real inver-
sion formulas are available [6,10,12]. These formulas can also be obtained
as applications of classical results from probability theory such as the

weak law of large numbers and the central limit theorem.

To abbreviate the writing we put for 0 < Yy <Yy, <®

1 1

(2) u{yl;yz} =

- t———ner + ©
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2. Inversions using lattice variables

Let X be a non-negative lattice variable with mean u > 0 and finite

variance 02 > 0. Take Xl,Xz,... a sample from X.

Sn(u) = X1 + X2 +...4 Xn s

and put

dn(u,t) = P{Sn(U) < [nt]}.

nz21l

Define the sum

By the weak law of large numbers we know that Sn(u)/n 5 u while [nt]/n + t.

Hence dn(u,t) + 0 if t < u, while dn(u,t) +1if t > u. Foru

{[nu] - nu}//n > 0 while

S (u -n

d (u,u) = P{-1
n ovn

ovn

u
< [nu] - nu, %

t note that

by the central limit theorem and the uniform convergence to the normal law

[7, p- 139]. Hence

0 t<u
d (u,t) » 1 t=u
n-’ 2
1 t>u
By Lebesgue's theorem and (2) for 0 < yp <v, <
(3) uly sy, = lim f{d (u,y,) - d (u,y))}duu)

n¥e 0

is a potential inversion formula.

Moreover by a local limit theorem [4, p. 225] or [1, p. 233]
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2.2

0 t#u
(4) h (u,t) := o/2mn P{S {u) = [nt]} d
n n 1 t

il
c

By proper approximation (4) will suggest a function of the form

0 vl
en(v) = chn(v,l) -+
1 v=1l1

for a constant c; this implies an inversion formula for the point mass at

y, i.e.

. < u
(5) uhhﬂﬂg%@wm.

Before turning to examples let us introduce the abbreviation

(0 < Yy < yz < ®)

(6) A = {m: [nyl] +1<ms [nyz]}.

Example 2.1. Poisson distribution and Laplace transform.

Put for the Laplace transform of y,
7 t
-tu
(7) g(t) := [ e du(u).
0

Then for m ¢ N

[

(8) "M () = f e M duu).

o

Let X be Poisson with mean u so that
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BN
By (2) and (3) we get ::35
© m o
uly.sy d = lim § 0 [ ™ (W gy -
1’72 m! -~ 3

n» meA_ 0 o
n -]

m .
. -nu m .
= lim z L—ETLM g( )(n). “‘1
no® meAn T

This inversion formula can be found in [12, p. 295]. It can be fruitfully
used in giving a probabilistic proof of Bernstein's theorem on completely
monotone functions; see [2, p. 191].

For the point mass we get from (4)

-nu (nu)[nt]

hn(u,t) = V2Tnu e [ne] !

Stirling's formula easily yields ¢ = 1 and

e (V) = exp - n{v - 1 + log v}.

Collecting results we get

Theorem 2.1. Let p be a bounded measure and g(t) its Laplace transform.

Then for 0 < Yy <y, <o

2
ty iy} = 1i Cow® ) .
H )’1:)’2} = 1lim z '—_m!_'_ g (n))

-+ meA
n n

and for 0 < y < =
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2.4

= lim(- S, (n) 1
u{y} = lim( y) g (y)’

n-o

The latter formula occurs also in [12, p. 298].

Example 2.2. Pascal distribution and Stieltjes transform.

In the sequel we also deal with the (generalized) Stieltjes transform.

(9) 0,(t) = [ (u+ t) Pdu(u)

o8

where p > 0.

In evaluating successive derivatives of ¢p the next lemma will be

useful.

Lemma 2.2. For a, ¢ € N, -p¢N0,u>0, t>0

I(p+a+c),
T(p)

(10) p*{t®(u + )P} = P+ )P %k (ca, b, -praer D)

in particular

(11) Da{tpﬁuc-lnc(u . t)—p} - I'(p+a+c), 1)ctp+c-1 a

OB R

Proof. Apply Leibniz's rule for differentiation of products; and then, for

a €N

F(-0,-8,-v;x) = ] —=—T (-x)

To prove (11), note that F(-a,v,Y;x) = (1 - x)a if a e N by [5, p. 1040]. 0

Let X be geometric with mean u. Then
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[nt] n+m-1. m n
d (w,t) = 1 " "p(1-p)
m=0
where u = EX = lI—;E-or p=(u+ 1)_1. For the point mass we note that
+m-1 m
h_(u,t) = ov/2Zm ("™ ) —%
n n+m
(1+u)
where m = [nt]. Stirling's formula again applies to yield
_ .2Yv.2n
(12) e (V) = (57
Theorem 2.3. Let ¥ be a bounded measure and ¢1(t) its (ordinary)} Stieltjes
transform. Then for 0 < Yy < Y, < o
. 1 1 .n, nwm-1 m-1
ply 5y} = lim Y =D {t (-D)" Te ()}, _
1’72 oo ['(n) meA m! 1 t=1
n
1 (-l)m-1 n+#m-1,.n
= limpes ] S {tehe, (03, )
n-® meA )

for 0 <y < o,

2n

uly} = tim 22X 2 )" e ().

n>eo

Proof.

u{yl;yz} =

(2n)

From (3) and the current choice of dn we find

13 n+m-1 < un
im z ( )f —_—

du(u).
n-o meAn m 0 (u+1)m+n

Puta=n,b=n+m-1,c=m-1, p=1in (11) to find the first
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formula. To get the second, put a=n+m- 1, b=n, c =0, p=11in (10)
and -ecall that F(a,b,c;x) = F(b,a,c;x).

For the point mass we get from (5) and (12)

© n
uly} = lim(4y)nf ——B~—§H du(u).
n-o 0 (u+y)
So we take a =n, b=2n-1,c=n-1and p=1in (11). U

Example 2.3. Binomial distribution and Stieltjes transform.

Let X be Bernoulli on 0 and 1 so that

P{X = k} =
' k=1
Then
[nt] )
P{s_(v) < [nt]} = ZZ (z)vz(l -yt
=0

suggests a potential inversion. However we should adapt it so that v ¢R

rather thanv € [0.1]. So define

[n/§1+t)]

NOOE ) Gu"ta s w™

Theorem 2.4. Let u be a bounded measure and ¢1(t) its (ordinary) Stieltjes

transform. Then for 0 < y1 < y2 < ®
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ulypsvyd = 1im EZB - 1)'(2)0n Hen ! o, (8}
= lim ) Mo ety L)

- 1)'(2)D
m

n+e LeB

where B_ = {E:[yg;f s 1] < £ < [;?:Tl}-

The proof is basically the same as that of the previous theorem.
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3. Inversions using also densities

Let Xl,Xz,... be a sequence of independent non-negative random variables
with common distribution I, mean 1 and finite variance. Let also YI’Y7""

be such a sequence but with distribution G, and independent of the sequence
{x.}.
i

Define S = X, +...+ X and T =Y, +...+ Y and look at
n 1 n n n

dn(u) = P{Sn/Tn < ul;

by combining a weak law and the central limit theorem, one easily finds that

0 u <1

d @ =f FMaundeMey » & uw=-1
n 0 2

1 u > 1

where F(n)(G(n)) is the n-fold convolution of F(G) with itself. The particular
case where Y. = 1 is important and yields d (u) = FY ().

The potential inversion formula reads now

(13) uly sy,} = lim f{dn(g—

) - d (59 }u(u)
noe Q) Y1 ny,

while a point mass formula can be derived by using

en(v) =& vdﬁ(v)
n

it dn is absolutely continuous.
.xample 3.1. Exponential distribution and Laplace transtorm.

Here Yi = 1 and Xi has an exponential density with mean 1. Hence




(14) d () = )

and so we have

Theorem 3.1. Let p be a bounded measure and g(t) its Laplace transform.

for 0 < Yy <Y, <

y n g™
(15) by 3y, = tim 2 AR e
oy, t

Proof. From (13) and (14) we see that

uly sy,} = lim fdu(u)
n>» 0

H

b4 _ n @ _ n
1im [2 Lr‘l(l?)ﬁ A [ e -w) "an(w)
n-o Yy t 0

by Fubini's theorem.

The point mass formula coincides with that of th. 2.1.

The appealing form of (15) suggests that if the sequence

_(m" sV &

kp(t) = F(n) ,n+l

3.2

Then

converges a.e. on R and is bounded by an L. -function then u is absolutely
g + 1

continuous and its derivative is given by the inversion

n g™ @

(16) iy D)

im
dt = o Ty o+l




The inversion formula (16) is well known [6,12]; its probabilistic proof due

to Feller [3] has been the inspiring source for the current paper. Formula (16)
has been used by Jagerman [9] to perform numerical inversion of the Laplace

transform. For other applications see a paper by Vinogradov [13].

Example 3.2. Exponential distributions and Stieltjes transform.

Let F(x) = G(x) = 1 - € %; then d_(u) turns out to be a beta distribution

on R , i.e.
+

_ r2n) ? A

Fz(n) 0 (l+v)2n

d (w

Theorem 3.2. Let u be a bounded measure and ¢, (t) be its (ordinary) Stieltjes
ELUA AL L 1 .

transform. Then for 0 < Y, < yz < o

y
u{yl;yz} = lim 21 12 D“{tZ“’l(-D)“‘l¢1(t)}dt
n*e r (n) yl

-1™! ?2 (n-1p2n-1

lim {tn¢1(t)}dt;

o T2(m) y,

for 0 <y <

n
uy) = 1in S8 0"y ().

n—)oo

Proof. We easily get

Y, . ® n
uly 3y} = lim FZZ“) 12t larf S duqw.
nse T7(n) y, 0 (u+t)

o
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3.4

We get the two formulas by applying lemma 2.2 with the two choices

n, b=2n-1, ¢ = 1 in (11)

a

'
=
]

p—
o
i

a 2n - 1, b=n, ¢ =0, p=1 in (10)
as in the proof of th. 2.3.

For the point mass we get e, as in (12); the resulting formula comes from
the second choice above. J

For the above formulas see [12, p. 350]. For applications, see [8].

The last example shows how an almost trivial probabilistic argument widens

the applicability of the previous examples.
Example 3.3. Exponential distributions and generalized Stieltjes transforms.

Return to the previous example but look at S and T instead of S
n+ n+a+p n

b

and Tn where a,b € Z are fixed. Then

S S
lim P{T—“——— < u} = lim P{;r-‘l < ul.
n->o n+a+p no n

Hence we have another candidate for dn’ i.e.

_ T'(2n+a+b+p) ? y+b-1 d

dn(u) " T(n+a+pT (n+b) 0 (1+v)2n+a+b+p

By the usual procedure we obtain also

b-a-p
e (v) =v 2 (2fynrasbep
n - 1+v )

If we now go through the same routine as in example 3.2 with a replaced
by n + b and ¢ by n + a we obtain the following results of E.R. Love and

A. Byrne [10,11]. We note that we have to restrict p to 140 in view of the

.
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w T e e
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3.5

probabilistic set up.

)
b
b
E Theorem 3.3. Let U be a bounded measure ; let ¢p(t) be its generalized Stieltjes

transform. Let a,b € Z. Then for 0 < Yy <Yy <

y
2
. T'(p) n+b, 2n+a+b+p-1 n+a )
{ M = -
ulysypd = Ul pre st [ "1t (-0)"" 9 (£)] dt;
n-o )’1
for 0 < y < o
. 22n+a+b+prg)) n+b, 2n+a+bep-1 nea
Hiyd = Lin e 70 (-0)""e )}

Note that by using different random variables one can get a variety of real
inversion formulas for the same Stieltjes transform ¢1. Needless to point

out how th. 3.2 follows from the last result.
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4. Remarks.

[

1. The main drawback of the method used in this paper is that the relevant
integral transform has to be recovered from a potential inversion formula.
2. The main virtue of the paper lies in singling out the relevance of thc

asymptotic behavior of the sequence dn for n » «~; probabilistic arguments often

T . . - * 8 e 3
RISISTUTTV PO WA A

provide this behavior immediately.

3. There exist additive counterparts for the formula (13). For if

(
d (v) » i

where v ¢ R, then a potential inversion formula for a transform on R is

L Vo " ) A

- Nj= O
i

uly sy, = lim ]{{d (u-y)) - d (u-y,)Hdu).
n—)(ﬂ

v o,
sin u . . .
- du leading to the inversion

n
The best known example is dn(v) = % f

formula for the Fourier transform

uly,sy,} = lim jzdx{ j e %9 (2)dz) A
n->® y .
izu
where ¢(z) = fe du(u).
R ) v -2
Another example is d_(v) = — f e dx leading to a real inversion
n V27 -co

formula for the Gauss-Weierstrasz transform [6]

wx(t) = /;% f exp - %{u - t)zdu(u).
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